
VMEbus Extensions for Instrumentation

TCP/IP Instrument Protocol Specification

VXI-11

Revision 1.0

July 17, 1995

NOTICE

The information contained in this document is subject to change without notice.

The VXIbus Consortium, Inc. makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. The VXIbus Consortium, Inc. shall not be
liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

VMEbus Extensions for Instrumentation TCP/IP Instrument Protocol
Specification VXI-11, Revision 1.0 is authored by the VXIbus Consortium, Inc.
and its sponsor members:

GenRad, Inc.
Hewlett-Packard Co.
National Instruments, Corp.
Racal Instruments, Inc.
Tektronix, Inc.
Wavetek, Inc.

This document is in the public domain. Permission is granted to reproduce and
distribute this document by any means for any purpose.

- i -

Table of Contents

A. Introduction ...1
A.1.Scope..1
A.2.Document Structure..1
A.3.Specification Objectives..2
A.4.Definition of Terms ..2
A.5.References ..3
A.6.RELATED DOCUMENTS...3

B. Network instrument Protocol ..5
B.1.Protocol Foundations ..6

B.1.1. Physical and Data Link Layer Requirements ...6
B.1.2. Network and Transport Layer Requirements ..7
B.1.3. Session and Presentation Layer Requirements..7
B.1.4. Application Layer Requirements ..8
B.1.5. Protocol Stack Summary ..8
B.1.6. Network Instrument Client...8
B.1.7. Network Instrument Server ..9

B.2.Connection Model...9
B.2.1. Core Channel...13
B.2.2. Abort Channel ...14
B.2.3. Interrupt Channel ..14
B.2.4. Core and Abort Channel Establishment Sequence...14
B.2.5. Interrupt Channel Establishment Sequence ..16

B.3.Interrupt Logic..16
B.4.System Behavior ...18

B.4.1. Multiple Controllers...18
B.4.2. Locking ...19
B.4.3. Time-outs ..19
B.4.4. Dropped or Broken Connections ..20
B.4.5. Security Control...20
B.4.6. Concurrent Operations...20

B.5.Basic Data Types ..21
B.5.1. Device_Link ..21
B.5.2. Error Codes ...21
B.5.3. Operation Flags ...22
B.5.4. Timeouts..22
B.5.5. Generic Parameter ...23
B.5.6. XDR ints and longs..23
B.5.7. Opaque Arrays...23

B.6.Network Instrument Messages (RPCs) ..23
B.6.1. create_link...25
B.6.2. destroy_link ...27
B.6.3. device_write...28
B.6.4. device_read..30
B.6.5. device_readstb ...32
B.6.6. device_trigger ..34
B.6.7. device_clear...36
B.6.8. device_remote..38
B.6.9. device_local ...40
B.6.10. device_lock..42
B.6.11. device_unlock ..44

- ii -

B.6.12. create_intr_chan ..45
B.6.13. destroy_intr_chan ..47
B.6.14. device_enable_srq..48
B.6.15. device_docmd ..49
B.6.16. device_abort...52
B.6.17. device_intr_srq ..53

C. Network Instrument RPCL ...54
C.1. Core and Abort Channel Protocol ..54
C.2. Interrupt Protocol...56

List of Tables

Table B.1 Network instrument Protocol...5
Table B.2 error Values ..22
Table B.3 Program Numbers ...24
Table B.4 create_link error Values ..26
Table B.5 destroy_link error Values ..27
Table B.6 device_write error Values..29
Table B.7 reason Bit Assignments...30
Table B.8 device_read error Values...31
Table B.9 device_readstb error Values...33
Table B.10 device_trigger error Values ...35
Table B.11 device_clear error Values ..37
Table B.12 device_remote error Values ...39
Table B.13 device_local error Values ..41
Table B.14 device_lock error Values ...43
Table B.15 device_unlock error Values ...44
Table B.16 create_intr_chan error Values ...46
Table B.17 destroy_intr_chan error Values..47
Table B.18 device_enable_srq error Values ...48
Table B.19 Byte Swapping ..50
Table B.20 device_docmd error Values ...51
Table B.21 device_abort error Values..52

List of Figures

Figure B.1 Network instrument Channels..6
Figure B.2 OSI Reference Model...6
Figure B.3 Network instrument Protocol Stack..8
Figure B.4 Network instrument Channels..9
Figure B.5 Connection Model - Single Connection, One Device..10
Figure B.6 Connection Model - Single Connection, Multiple Devices..10
Figure B.7 Connection Model - Two Connections ...11
Figure B.8 Connection Model - Two Hosts, Single Device...11
Figure B.9 Connection Model - Two Hosts, Multiple Devices..12
Figure B.10 Connection Model - Two Hosts, Concurrent Multiple Devices ...12
Figure B.11 Invalid Connection Model - Two Hosts ..13
Figure B.12 Core/Abort Connection Sequence..15
Figure B.13 Interrupt Connection Sequence ..16
Figure B.14 Interrupts - SRQ in the middle of another call..17
Figure B.15 Interrupts - SRQ after another call ...17
Figure B.16 Operation Flags ...22

- iii -

Section A: Introduction
Page 1

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

VMEbus Extensions for Instrumentation:

TCP/IP Instrument Protocol Specification

A. INTRODUCTION
The need to connect instruments to computer networks has developed in the test and measurement
industry. The connections required may be to either local-area networks (LANs) or wide-area networks
(WANs). Along with this comes the need to have a standard that specifies the interconnection of
controllers and devices over a computer network. This specification, which is part of the VXIbus set of
specifications, describes how instrumentation can be connected to industry-standard networks. The
communications and programming paradigms supported by this specification are similar in nature to the
techniques supported by IEEE 488.2. The protocol described allows ASCII-based communications to take
place between a controller and a device over a computer network. The reader should be knowledgeable
about networks, the Internet Protocol Suite, ONC RPC, and IEEE 488.2.

A.1. SCOPE

This specification is part of the VXIbus set of specifications and defines a network instrument protocol to
be used for controller - device communication over a TCP/IP network.

The only networks directly considered by this specification are those which support the Internet Protocol
Suite. The techniques defined in this specification could be used over other networks, such as networks
which support the OSI protocol standards, but this document does not address that mapping. This
specification uses Open Network Computing (ONC) remote procedure calls on top of the Internet Protocol
Suite. The use of ONC/RPC is for the specification of the protocol on the network only, and does not
specify a particular application interface.

Other network protocols may also be supported by a network instrument host.

A.2. DOCUMENT STRUCTURE

This document is divided into 2 sections. The first section, an introduction, is intended to familiarize
readers with the intent and scope of the document.

The second section, Network Instrument Protocol, defines the network protocol to be used for
communication between controllers and devices over a TCP/IP network.

Page 2 Section A:
Introduction

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

A.3. SPECIFICATION OBJECTIVES

This specification has the following objectives:

1. To allow ASCII messages, including IEEE 488.2 messages, and IEEE 488.1 instrument control
messages to be passed between a controller and a device over a TCP/IP network.

2. To define an instrument protocol which can be used for this controller/device communication over
a TCP/IP network.

3. To enable the interconnection of independently manufactured apparatus into a single functional
system.

4. To provide a mechanism to extend the protocol.
5. To define an instrument protocol which can support diverse application interfaces.
6. To allow for other networking protocols as the functionality of devices and controllers dictate, such

as NFS or telnet.

A.4. DEFINITION of TERMS

controller: a component of the system which sends program messages to and receives response messages
from one or more devices.

device: a uniquely addressable component of a system which receives program messages from and sends
response messages to one or more controllers.

network instrument host: an end-point on a network which may include controllers, devices, network
instrument clients, or network instrument servers.

network instrument connection: a connection between a network instrument client and a network
instrument server which contains a core channel, optionally an abort channel, and optionally an interrupt
channel.

network instrument client: an entity which maintains a single network instrument connection with a
network instrument server for one or more controllers.

network instrument server: an entity which maintains a single network instrument connection with a
network instrument client for one or more devices.

network instrument message: a well defined sequence of bytes sent between a network instrument client
and a network instrument server which contains a request or reply. The network instrument messages are
defined using ONC/RPC.

link: an instance of a communication pathway over a network instrument connection between a controller
and a device.

system: a group of devices and controllers interconnected by a network which supports the Internet
Protocol Suite and the network instrument protocol defined herein.

Section A: Introduction
Page 3

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

The following terms are used to identify the contents of paragraphs, as in other VXIbus Specifications.
These definitions are the same as those in IEEE 1155-1992.

RULE: Rules SHALL be followed to ensure compatibility. A rule is characterized by the use of the
words SHALL and SHALL NOT. These words are not used for any other purpose other than stating
rules.

RECOMMENDATION: Recommendations consist of advice to implementors which will affect the
usability of the final device. Discussions of particular hardware to enhance throughput would fall under a
recommendation. These should be followed to avoid problems and to obtain optimum performance.

PERMISSION: Permissions are included to clarify the areas of the specification that are not specifically
prohibited. Permissions reassure the reader that a certain approach is acceptable, and will cause no
problems. The word MAY is reserved for indicating permissions.

OBSERVATION: Observations spell out implications of rules and bring attention to things that might
otherwise be overlooked. They also give the rationale behind certain rules, so that the reader understands
why the rule must be followed.

Any text that appears without a heading should be considered as description of the standard.

A.5. REFERENCES

[1] IEEE Std 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumentation.
[2] IEEE Std 488.2-1992, IEEE Standard Codes, Formats, Protocols, and Common Commands For Use

With IEEE Std 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumentation.
[3] Internet Protocol, Request for Comments 791, Jon B. Postel, DDN Network Information Center, SRI

International, September, 1981, See also MIL-STD 1777.
[4] Transmission Control Protocol, Request for Comments 793, Jon B. Postel, DDN Network Information

Center, SRI International, September, 1981, See also MIL-STD 1777.
[5] A Standard for the Transmission of IP Datagrams over Ethernet Networks, Request for Comments

894, C. Hornig, DDN Network Information Center, SRI International, April 1984.
[6] XDR: External Data Representation Standard, Request for Comments 1014, Sun Microsystems, DDN

Network Information Center, SRI International, June, 1987.
[7] A Standard for the Transmission of IP Datagrams over IEEE 802 Networks, Request for Comments

1042, J. Postel and J. Reynolds, DDN Network Information Center, SRI International, February 1988.
[8] RPC: Remote Procedure Call Protocol Specification, Request for Comments 1057, Sun Microsystems,

DDN Network Information Center, SRI International, June, 1988.
[9] Requirements for Internet Hosts -- Communication Layers, Request for Comments 1122, R. Braden,

DDN Network Information Center, SRI International, October, 1989.
[10] ISO 8802-2:1989[ANSI/IEEE 802.2-1989] Information Technology - Local and Metropolitan Area

Networks - Part 2: Logical Link Control.
[11] ISO/IEC 8802-3:1993 [ANSI/IEEE 802.3-1993] Information Technology - Local and Metropolitan

Area Networks - Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access
Method and Physical Layer Specifications.

[12] The Ethernet, Physical and Data Link Layer Specifications, Version 2.0, Digital Equipment
Corporation, Intel Corporation, and Xerox Corporation, 1982.

A.6. RELATED DOCUMENTS

This specification is one document in a set of specifications which describe a method for ASCII-based
communication over a network between controllers and devices. This specification describes the protocol

Page 4 Section A:
Introduction

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

used for this communication. Other specifications in the group describe the specific mapping from the
protocol described here to the specific interface addressed by the companion specification. This
specification does not require that the companion specifications be followed to claim compliance to this
specification alone. This specification also does not require the existence of a companion specification.

The recommended approach for using these specifications is to first read this specification, since the
protocol forms the foundation upon which the companion specifications are built, then the appropriate
companion specification should be read. If your interest is in connecting VXIbus devices to a LAN, read
the companion specification TCP/IP-VXIbus Interface Specification, VXI-11.1. If your interest is in
connecting IEEE 488.1 devices to a LAN, read the companion specification TCP/IP-IEEE 488.1 Interface
Specification, VXI-11.2. If your interest is in connecting IEEE 488.2 style instruments directly to a LAN,
read the companion specification TCP/IP-IEEE 488.2 Instrument Interface Specification, VXI-11.3. If
your interest is in connecting devices which support some other interface, such as RS-232, to a LAN, you
may want to read one or more of the companion specifications in order to understand the general
approach taken in mapping from the protocol to a specific interface.

Those specifications listed below are currently part of this group:

[1] VMEbus Extensions for Instrumentation: TCP/IP-VXIbus Interface Specification, VXI-11.1, Revision
1.0.

[2] VMEbus Extensions for Instrumentation: TCP/IP-IEEE 488.1 Interface Specification, VXI-11.2,
Revision 1.0.

[3] VMEbus Extensions for Instrumentation: TCP/IP-IEEE 488.2 Instrument Interface Specification,
VXI-11.3, Revision 1.0.

Section B: Network Instrument Protocol Page 5

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B. NETWORK INSTRUMENT PROTOCOL
The network instrument protocol uses the ONC remote procedure call (RPC) model. Conceptually, this
model allows one application (typically called the client) to call procedures in a remote application
(typically called the server) as if the remote procedures were local. This specification uses ONC/RPC for
defining the network instrument messages which are passed over the network, but does not require that
these RPCs be provided as the application interface. The ONC/RPC interface may, however, be used by a
device designer as a matter of convenience.

The client identifies the remote procedure, or message, by a unique number. This number is then encoded
into a message along with the procedure's argument types and values. The message is sent to the server
machine where it is decoded by the server. The server uses the unique identifier to dispatch the request.
When the request is completed, the return values are encoded into a message which is sent back to the
client machine.

The interface definition (see Appendix I, "Network instrument RPCL") gives the function prototypes as
well as the unique identifiers for the procedures. For ONC RPC, the unique identifier is a combination of
a program number (also known as an interface id), a procedure number, and a version number.

Table B.1 outlines the 17 messages that define the network instrument protocol. These messages are
expected to be supported by all devices that claim to be network instrument compliant. Most of these
messages will be familiar to those who have worked with IEEE 488 devices.

Message Channel Description
create_link core opens a link to a device
device_write core device receives a message
device_read core device returns a result
device_readstb core device returns its status byte
device_trigger core device executes a trigger
device_clear core device clears itself
device_remote core device disables its front panel
device_local core device enables its front panel
device_lock core device is locked
device_unlock core device is unlocked
create_intr_chan core device creates interrupt channel
destroy_intr_chan core device destroys interrupt channel
device_enable_srq core device enables/disables sending of service requests
device_docmd core device executes a command
destroy_link core closes a link to a device
device_abort abort device aborts an in-progress call
device_intr_srq interrupt used by device to send a service request

Table B.1 Network instrument Protocol

The messages are sent over three different channels: a core synchronous command channel, a secondary
abort channel (for aborting core channel operations), and an interrupt channel.

Page 6 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

Instrument

Network
Core (write, read)

Abort

Interrupt (SRQ)
Controller

Instrument

Device

Network

Figure B.1 Network instrument Channels

B.1. PROTOCOL FOUNDATIONS

The terminology used in this section to describe the stack used by the network instrument protocol will
loosely follow the International Standards Organization (ISO) Open Systems Interconnection (OSI)
reference model. The OSI model is a seven layer model depicted in the following figure.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure B.2 OSI Reference Model

The network instrument protocol is an application layer protocol designed for controller to device
communication using a paradigm similar to communication with IEEE 488 devices. The network
instrument protocol is built on an industry-standard protocol stack, allowing instrumentation and
controllers to communicate over existing networks. The following sections work from the bottom of the
protocol stack upward, describing the protocol stack requirements of controllers or devices which
implement the network instrument protocol.

B.1.1. Physical and Data Link Layer Requirements

RULE B.1.1:
Hosts SHALL support an Ethernet/802.3 Data Link Layer and an 802.3/10BASE-T Physical Layer. The
device SHALL include an RJ-45 connector for 10BASE-T.

PERMISSION B.1.1:
Hosts MAY support other Data Link and Physical Layers in addition to Ethernet/802.3/10BASE-T.

Section B: Network Instrument Protocol Page 7

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.1.2. Network and Transport Layer Requirements

RULE B.1.2:
Hosts SHALL support the Internet Protocol Suite, including the Transmission Control Protocol (TCP)
and Internet Protocol (IP), and TCP SHALL be used as the transport layer.

PERMISSION B.1.2:
Hosts MAY also support UDP on the interrupt channel. See the description of the create_intr_chan
message for more information.

OBSERVATION B.1.1:
The network instrument protocol is designed to use a reliable, connection-oriented transport service.
Instrument procedures are generally not idempotent1, as receiving the same message a second time may
put the instrument into a different state, and the use of TCP ensures that operations are performed at most
once. Using TCP implies that both sides of the connection are:

1. aware of the connection
2. and can detect when the connection terminates

The use of TCP as the underlying transport mechanism also:

1. ensures that messages are delivered in order
2. ensures that if a response is received, the procedure was executed exactly once
3. removes from the controller and device the need to verify the arrival of messages
4. allows parameters to a remote procedure to be any size

RFC 1122 of the Internet Engineering Task Force (IETF) outlines the requirements of hosts which
support the Internet Protocol Suite.

The mechanism by which the TCP/IP stack is configured, including the IP address, is implementation
dependent. The IP address and other stack parameters may be assigned using a suitable network protocol
or configured using a local mechanism.

B.1.3. Session and Presentation Layer Requirements

RULE B.1.3:
All network instrument hosts SHALL implement a protocol whose messages are compatible with the
Open Network Computing (ONC) remote procedure call (RPC) definition. This includes the use of the
RPC mechanism at the session layer, and the use of the external data representation (XDR) mechanism at
the presentation layer.

OBSERVATION B.1.2:
Network instrument hosts are not required to support ONC/RPC as an application interface. Network
instrument hosts need only ensure that the messages sent and received as part of the network instrument
protocol are ONC/RPC and XDR compatible.

1An idempotent procedure can be executed more than once without altering the device's state or its reply
to the controller.

Page 8 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

RULE B.1.4:
All hosts acting as network instrument servers SHALL support a port mapper.

A port mapper provides a means for a network instrument client to determine which port a network
instrument server is listening on.

B.1.4. Application Layer Requirements

RULE B.1.5:
Network instrument hosts SHALL implement all the network instrument messages and their data types as
defined in section B.5, "Basic Data Types", and section B.6, "Network Instrument Messages (RPCs)".

A network instrument message is a well defined sequence of bytes sent between a network instrument
client and a network instrument server which contains a request or reply. The network instrument
messages are defined using ONC/RPC.

B.1.5. Protocol Stack Summary

Based on the requirements at each layer, the resulting protocol stack appears in Figure B.3.

XDR

ONC/RPC

TCP

IP

Network Instrument

RFC 1014

RFC 1057

RFC 793

RFC 791

as specified in this specApplication

Presentation

Session

Transport

Network

Data Link

Physical

Ethernet/802.3 8802-3

802.3/10BASE-T 8802-3

Figure B.3 Network instrument Protocol Stack

B.1.6. Network Instrument Client

A network instrument client is any entity which has a single network instrument connection to a network
instrument server. A network instrument client may be a host, a process running on a host, or a thread
running within a process on a host. This could affect the number of network instrument clients residing on
any given host, and therefore the number of connections from that host.

Section B: Network Instrument Protocol Page 9

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.1.7. Network Instrument Server

A network instrument server is any entity which has a single network instrument connection to a network
instrument client. A network instrument server may be a host, a process running on a host, or a thread
running within a process on a host. This could affect the number of network instrument servers residing
on any given host, and therefore the number of available network instrument connections.

B.2. CONNECTION MODEL

This section defines the connection model of the network instrument protocol, as well as the relationship
between controllers, devices, network instrument clients, and network instrument servers. The term
controller, as used in this specification, typically refers to the RPC client, while the term device typically
refers to the RPC server. The only exception is when the roles are reversed for interrupts, which will be
described further later in the specification.

As discussed in the overview at the beginning of this specification and shown in Figure B.1, the network
instrument protocol uses up to three channels between the controller and the device for passing network
instrument messages. A network instrument connection is this set of channels:

• Core Channel: Used to transfer all requests except the device_abort RPC and the device_intr_srq
RPC.

• Abort Channel: Used to transfer the device_abort RPC (optional for client).

• Interrupt Channel: Used to transfer the device_intr_srq RPC from the device to the controller
(optional for client).

These three channels correspond to three RPC clients/servers.

Core Channel
RPC Client

Abort Channel
RPC Client

Interrupt Channel
RPC Server

Network Instrument
Client

Core Channel
RPC Server

Abort Channel
RPC Server

Interrupt Channel
RPC Client

Network Instrument
Server

Figure B.4 Network instrument Channels

Network instrument connections are established using the create RPC client and create RPC server
operations discussed in sections B.2.4 and B.2.5. With all three channels established a network instrument
client contains two RPC clients and one RPC server, while a network instrument server contains two RPC
servers and one RPC client.

Page 10 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

RULE B.2.1:
A network instrument server SHALL implement all three of the channels described, and the channels
SHALL be established by the defined connection establishment sequences outlined in sections B.2.4, Core
and Abort Connection Establishment Sequence, and B.2.5, Interrupt Connection Establishment
Sequence.

OBSERVATION B.2.1:
Although a network instrument server is required to support all three channels, a particular network
instrument connection may not contain all three at the discretion of the network instrument client.

Links represent an instance of a communication pathway between a controller and a device. Any given
network instrument connection may carry multiple links created with the create_link RPC. Also note that
more than one controller may have a link open to a single device at the same time.

Figure B.5 shows a typical scenario with one network instrument client talking to one network instrument
server. A single link is being used on a single connection to communicate with one device.

Controller
Instrument
Client

Instrument
ServerInstrument

Connectionlink1 link1

Host

Device
Network

Network
Network

HostNetwork NetworkInstrument Instrument

Figure B.5 Connection Model - Single Connection, One Device

Figure B.6 shows a typical scenario with one network instrument client talking to one network instrument
server. Multiple links are being used on the single connection to communicate with more than one device
at a time.

Device

Controller
Instrument
Client

Instrument
ServerInstrument

Connection
link1

link2

linkN

link1

link2

linkN

Host

Device

Device

Network
Network

Network

Host
Network

Network

Instrument

Instrument

Figure B.6 Connection Model - Single Connection, Multiple Devices

Section B: Network Instrument Protocol Page 11

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

Figure B.7 shows a scenario where a single host has two network instrument clients speaking with two
network instrument servers.

Device

Controller
Instrument
Network

Client
Instrument
Server

Instrument
Connectionlink1

link2

link1

link2

Host

Controller
Instrument
Client

link1

Instrument
Server

link1

Instrument
Connection

Network

Network

Network

Network

Network

Device

Device

Network

Network

Instrument

Instrument

Host

Figure B.7 Connection Model - Two Connections

Figure B.8 shows a scenario where two hosts both have links to the same device.

Controller
Instrument
Network

Client
Instrument
Server

Instrument
Connection

link1 link1

Controller
Instrument
Client

link1

Instrument
Server

link1

Instrument
Connection

Network

Network Network

Network
NetworkNetwork

NetworkInstrument Instrument

InstrumentNetwork

Host

Host

Device

Host

- server's must share lock information.
See section B.4.2, Locking.

*

*

Figure B.8 Connection Model - Two Hosts, Single Device

Page 12 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

Figure B.9 shows a scenario where two hosts are communicating with different devices in the same
network instrument host.

Device

Controller
Instrument
Network

Client
Instrument
Server

Instrument
Connectionlink1

link2

link1

link2

Controller
Instrument
Client

link1

Instrument
Server

link1

Instrument
Connection

Network

Network Network

Network
NetworkNetwork

Network

Instrument

Instrument

InstrumentNetwork

Host

Host

Device

Device

Host

Figure B.9 Connection Model - Two Hosts, Multiple Devices

Figure B.10 shows a scenario where two hosts both have links to multiple devices within the same
network instrument host

DeviceController
Instrument
Network

Client
Instrument
Server

Instrument
Connectionlink1

link2

link1

link2

Controller
Instrument
Clientlink1

Instrument
Server link1Instrument

Connection

Network

Network Network

Network
NetworkNetwork

NetworkInstrument Instrument

InstrumentNetwork

Host

Host

Device

Host

link2
link2

- server's must share lock information.
See section B.4.2, Locking.

*

*

Figure B.10 Connection Model - Two Hosts, Concurrent Multiple Devices

Section B: Network Instrument Protocol Page 13

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

Figure B.11 shows an invalid connection model. Two network instrument clients cannot be connected to
the same network instrument server. This is due to the one-to-one nature of the TCP connections which
are used between network instrument clients and servers.

Controller
Instrument
Network

Client
Instrument
Connection

link1

Controller
Instrument
Client

link2

Instrument
Server

link1

Instrument
Connection

Network

Network

Network

Network

Network

Network

Instrument

Instrument

InstrumentNetwork

Host

Host

Device

Host

link2

INVALID MODEL

Figure B.11 Invalid Connection Model - Two Hosts

B.2.1. Core Channel

The core channel is used for all RPCs except abort and interrupts.

RULE B.2.2:
The network instrument server SHALL process all RPCs on this channel in the order received. The RPC
reply SHALL NOT be sent until the associated action is complete.

OBSERVATION B.2.2:
The use of TCP on this channel ensures that messages arrive in order from the network instrument client
and that messages sent from the network instrument server arrive at the network instrument client in
order.

RULE B.2.3:
Other protocols carried on the core channel using different program numbers SHALL NOT interfere with
the network instrument protocol.

OBSERVATION B.2.3:
This rule is not easily tested, but implementors should be aware that additional protocols which interfere
with the network instrument protocol will cause system problems which are difficult to resolve.

RULE B.2.4:
All RPCs executed by a network instrument server which perform I/O to the same device or interface
SHALL be serialized by the network instrument server.

OBSERVATION B.2.4:
RPCs which are executed entirely within the network instrument server are unaffected by this rule. RPCs
acting on different devices and interfaces need not be serialized.

Page 14 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.2.2. Abort Channel

RULE B.2.5:
The abort channel SHALL be used to carry only the device_abort RPC.

RECOMMENDATION B.2.1:
The device_abort RPC on the abort channel should be responded to in a timely manner.

OBSERVATION B.2.5:
A network instrument server's abort channel is typically implemented as an interrupt or signal handler in a
single threaded operating system, or as a higher priority thread in a multi-threaded operating system.

B.2.3. Interrupt Channel

The interrupt channel is used by the network instrument server to deliver service requests to the network
instrument client. This effectively reverses the role of client and server. The network instrument server
acts as an RPC client, making a remote procedure request of the network instrument client, acting as an
RPC server.

RULE B.2.6:
The interrupt channel SHALL be established by the network instrument server to the network instrument
client after the network instrument client issues the create_intr_chan RPC.

OBSERVATION B.2.6:
A network instrument client's interrupt channel is typically implemented as an interrupt or signal handler
in a single threaded operating system, or as a separate thread in a multi-threaded operating system.

B.2.4. Core and Abort Channel Establishment Sequence

Figure B.12 describes the order in which the connection establishment typically takes place for the core
and abort channels. Note that the second and third create_link request/reply pairs are listed in the figure
only to emphasize that the same port number is returned on subsequent create_links after the first, and
that no additional channel creation is necessary after the first create_link sequence is complete.

Section B: Network Instrument Protocol Page 15

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

Network Instrument Client Network Instrument Server
create RPC server (abort channel)
create RPC server (core channel)
register core channel with portmapper
be ready to accept connection requests

create RPC client (core channel.)
create_link(1)

reply to create_link(1) - return abort port #
create RPC client (abort chan., optional)

create_link(2)
reply to create_link(2) - return same abort port #

create_link(3)
reply to create_link(3) - return same abort port #

Figure B.12 Core and Abort Channel Establishment Sequence

OBSERVATION B.2.7:
The steps mentioned in Figure B.12 involve the following. Implementation details may vary from one
operating system to another.
• create RPC server (abort/core)- create listen socket upon which connection requests will be accepted

and set up any local data structures required to track the RPC server, typically done by a
svctcp_create.

• register core channel with port mapper - register the program number and version number with the
local port mapper, typically associated with the svc_register, which also sets up local data structures
to dispatch requests.

• create RPC client (core/abort)- temporarily connect to the port mapper on the server to find the port
for the program number and version being used by the network instrument protocol. After
determining the port number, create the core channel by connecting to that port. Set up any local data
structures necessary to track the RPC client. This step is typically done by a clnttcp_create.

• create_link requests and replies - These steps represent sending network instrument protocol
create_link requests and replies.

After the first create_link, the network instrument client may create an RPC client for the abort channel,
but no additional client creations are necessary after subsequent create_links. These connections may be
torn down by the network instrument client once all links have been closed with destroy_link. The whole
sequence could then start over.

RULE B.2.7:
The network instrument server SHALL return the same abort port number in all replies to create_link
sent on the same core channel.

If the network instrument client establishes an abort channel, the port number returned in the create_link
reply is used to make the connection.

OBSERVATION B.2.8:
The network instrument client is not required to create an abort channel.

RULE B.2.8:
The network instrument server SHALL accept and process RPCs on the core channel even if an abort
channel is never established.

Page 16 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.2.5. Interrupt Channel Establishment Sequence

Figure B.13 describes the process by which the interrupt channel is established.

Network Instrument Client Network Instrument Server
create RPC server (interrupt channel)
create_intr_chan

create RPC client (interrupt channel)
reply to create_intr_chan

Figure B.13 Interrupt Channel Establishment Sequence

RULE B.2.9:
A create_intr_chan request received when an interrupt channel already exists SHALL NOT cause the
network instrument server to create a new channel. The network instrument server SHALL use the
existing interrupt channel such that there is only one interrupt channel used by all links on that network
instrument connection.

RULE B.2.10:
If the network instrument client issues destroy_intr_chan, then the network instrument server SHALL
destroy the RPC client to tear down the interrupt channel.

OBSERVATION B.2.9:
If the network instrument client never calls destroy_intr_chan, the interrupt channel is closed by the
network instrument server when the core channel is closed by the network instrument client.

B.3. INTERRUPT LOGIC

The interrupt mechanism allows the device to send a notification call to the controller (effectively
switching the roles of RPC client and RPC server). One way a controller could implement the interrupt
mechanism is to register a handler for the interrupt, inform the current device to enable the interrupt, and
then service the interrupt when it occurs. Figures B.14 and B.15 shows possible sequences of interrupt
channel creation and usage.

Section B: Network Instrument Protocol Page 17

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

create_intr_chan

acknowledge

device_enable_srq

device_write

device_intr_srq

acknowledge to write

Client Server

acknowledge

Figure B.14 Interrupts - SRQ in the middle of another call

create_intr_chan

acknowledge

device_enable_srq

device_write

device_intr_srq

acknowledge to write

Client Server

acknowledge

Figure B.15 Interrupts - SRQ after another call

Network instrument clients can implement interrupts by using either a separate interrupt process, threads,
or by emulating threads using a signal handling routine that is invoked on incoming messages to the
interrupt port.

PERMISSION B.3.1:
The network instrument server MAY issue interrupts in the middle of an active call. In general, this
implementation gives more timely responses, and can be easier than delaying the interrupt until an in-
progress action has finished.

The device_intr_srq RPC is implemented as a one-way RPC. This means that the network instrument
server does not expect a response from the network instrument client. This is necessary to avoid deadlock
situations in a single-threaded environment where if a response were expected to an interrupt both the
network instrument client and network instrument server could be waiting for a response from the other,
with neither proceeding.

Page 18 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

The create_intr_chan RPC is used to identify the host or port that can service the interrupt. The
device_enable_srq RPC is used to enable or disable an interrupt. The destroy_intr_chan RPC is used to
close the interrupt channel.

OBSERVATION B.3.1:
The device_enable_srq RPC contains a handle parameter. The same data contained in handle is passed
back in the handle parameter of the device_intr_srq RPC. Since the same data is passed back, the
network instrument client can identify the link associated with the device_intr_srq.

The network instrument protocol recognizes one type of interrupt, service request. Note that the return
type to the interrupt RPC is void, denoting a one-way RPC.

RULE B.3.1:
A network instrument host SHALL use the following RPCL definition for interrupt messages.

struct Device_SrqParms {
 opaque handle<>;
};

program DEVICE_INTR {
 version DEVICE_INTR_VERSION {
 void device_intr_srq (Device_SrqParms) = 30;
 }=1;
}= 0x0607B1;

The program number 0x0607B1 is the registered program number for the network instrument protocol's
interrupt channel.

B.4. SYSTEM BEHAVIOR

B.4.1. Multiple Controllers

A typical communication model consists of a single path from a controller to a device. On an RPC
interface multiple controllers may be connected to the device’s RPC interface at any given time. Therefore
multiple controllers may be attempting to write to the device's input buffer and read from the device's
output buffer at the same time. The device may also be sending service requests to more than one
controller. The controllers accessing the device should take actions, such as locking, to prevent corruption
of each others transactions, or unpredictable results may occur.

OBSERVATION: B.4.1:
Instruments may not readily support being controlled by more than one controller due to the complexities
of identifying atomic actions and interactions among instrument commands.

RECOMMENDATION B.4.1:
An instrument's host should support at least two network instrument servers simultaneously.

OBSERVATION B.4.2:
The previous recommendation does not imply that the instrument's host will have at least two processes
waiting to receive connection requests. A common implementation involves dynamic creation of the
network instrument servers, where a network instrument server is created when a connection request
arrives.

Section B: Network Instrument Protocol Page 19

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

RECOMMENDATION B.4.2:
An instrument's host should support simultaneous routing of at least two links to any device. The links
may be through the same or different network instrument servers.

RULE B.4.1:
A network instrument server SHALL support links to every device accessible to any other network
instrument server in the host.

OBSERVATION B.4.3:
The intent of this rule is to prevent the dedication of particular devices to particular network instrument
servers.

B.4.2. Locking

In topologies as seen in figure B.10 a single device may be accessed by multiple controllers over separate
links. For these situations the network instrument server supports locking access to a link, which
guarantees exclusive access to the device associated with that link to that link only.

If a controller expects to have exclusive access to a device, it must have the lock. When no link has the
lock, multiple controllers may be sending data and generally manipulating the state of the device. Under
such circumstances, the behavior of the device is unpredictable.

The first call to device_lock for an unlocked device acquires the lock. Subsequent calls to device_lock for
the same device return an error. device_unlock unlocks the device if this link has the lock, otherwise
device_unlock returns an error.

OBSERVATION B.4.4:
Care should be taken in implementing locking to ensure that multiple network instrument servers do not
believe they have acquired a lock simultaneously.

B.4.3. Time-outs

Many of the remote procedures are passed timeout values. Values may be specified for I/O operations and
locks

RULE B.4.2:
The network instrument server SHALL allow at least io_timeout milliseconds for an I/O operation to
complete.

OBSERVATION B.4.5:
The time it takes for the I/O operation to complete does not include any time spent waiting for the lock.

PERMISSION B.4.1:
An io_timeout of zero MAY be interpreted by the network instrument server to mean that the associated
I/O operation should not block.

RULE B.4.3:
If the device is locked by another link and the lock_timeout is non-zero, the network instrument server
SHALL allow at least lock_timeout milliseconds for a lock to be released. If the device is locked by
another link and the lock_timeout is equal to zero, the network instrument server SHALL NOT wait for a
lock to be released, but SHALL return an error immediately.

Page 20 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

PERMISSION B.4.2:
No requirements are made on the precision of the time. A network instrument server MAY round any
io_timeout value and any non-zero lock_timeout value up to a value consistent with the timing precision
within the network instrument server.

RULE B.4.4:
A network instrument client SHALL provide a client side (local) timeout mechanism which is used in the
event that the network instrument server does not respond in the specified amount of time.

This timeout mechanism is typically provided by the RPC subsystem. How this timeout value is set and
what values it may take depend on aspects of the RPC subsystem beyond the scope of this specification.

OBSERVATION B.4.6:
The RPC client side (local) timeout value should be set to a value greater than the sum of the io_timeout
and lock_timeout values passed to the network instrument server. If the RPC client timeout is too short,
the client may timeout and stop listening for a reply prior to the network instrument server successfully
completing the requested operation and replying.

OBSERVATION B.4.7:
A reply sent by the network instrument server after the network instrument client is no longer listening for
it should be discarded by the network instrument client when it next sends or receives a network
instrument message (and this is typically handled by the RPC subsystem, if such a subsystem is used by a
particular implementation).

B.4.4. Dropped or Broken Connections

RULE B.4.5:
When the core channel is reset or closed (as defined by TCP), the network instrument server SHALL
recognize this condition and release all resources associated with all links which were active on that
network instrument connection (as if a destroy_link was executed for each open link on that connection).
Resources to be released include locks, the abort channel, and the interrupt channel.

RECOMMENDATION B.4.3:
The network instrument server should also be configured to use an implementation defined mechanism to
discover if the network is down or if a network instrument client has crashed, and perform the same
cleanup actions.

B.4.5. Security Control

The RPC interface defined by this specification provides no services to authenticate a user for security. A
controller must merely know a network instrument host's IP address to access all of its functions. Security
control is beyond the scope of this specification, though a network instrument host may support security
control methods.

B.4.6. Concurrent Operations

The protocol defined by this specification does not preclude the network instrument server or network
instrument client from attempting to perform operations concurrently. However, due to the nature of most
commercially available RPC software packages which may be used to implement the protocol defined by

Section B: Network Instrument Protocol Page 21

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

this specification, it is expected that a typical network instrument host's implementation will serialize the
RPCs.

If a network instrument client's implementation does allow multiple RPCs to be outstanding, then the
network instrument server on the receiving end may have multiple RPC requests queued in its TCP input
buffer. These RPCs are pending, but not in progress, and therefore are unaffected by device_abort.

B.5. BASIC DATA TYPES

The following XDR definitions are used by many of the RPC definitions that follow.

B.5.1. Device_Link

The network instrument server returns an identifier of type Device_Link as a result of the create_link call.
This identifier is handed back to the network instrument server by the network instrument client on each
subsequent call.

typedef long Device_Link;

The network instrument server verifies the validity of the identifier on each call.

The Device_Link data is not modified by the controller.

B.5.2. Error Codes

The result of any remote procedure call is a data structure whose first element has the type of
Device_ErrorCode. A value of 0 indicates that the call was successfully completed and the results are
valid. Any other value indicates that during the execution of the call, the network instrument server
detected an error. All other error codes are reserved.

typedef long Device_ErrorCode ;
struct Device_Error {
 Device_ErrorCode error;
};

Table B.2 lists the possible error codes.

Page 22 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

error Meaning

0 No error
1 Syntax error
3 device not accessible
4 invalid link identifier
5 parameter error
6 channel not established
8 operation not supported
9 out of resources
11 device locked by another link
12 no lock held by this link
15 I/O timeout
17 I/O error
21 Invalid address
23 abort
29 channel already established

Table B.2 error Values

B.5.3. Operation Flags

The operation flags are passed on many of the calls to communicate additional information concerning
how the request is carried out. Undefined bits are reserved for future use. Controllers send undefined bits
as zero (0). These flags are sent from the network instrument client to the network instrument server as
parameters to several of the RPCs.

waitlockreservedendreservedtermchrsetreserved

31- 8 7 6 - 4 3 2 - 1 0

Bit #

Figure B.16 Operation Flags

• waitlock(116): If the flag is set to one(1), then the network instrument server suspends (blocks) the
requested operation if it cannot be performed due to a lock held by another link for at least
lock_timeout milliseconds. If the flag is reset to zero(0), then the network instrument server sets the
error value to 11 and returns if the operation cannot be performed due to a lock held by another link.

• end(816): If the flag is set to one(1) then the last byte in the buffer is sent with an END indicator.
This flag is only valid for device_write.

• termchrset(8016): This flag is set to one(1) if a termination character is specified on a read. The
actual termination character itself is passed in the termchr parameter. This flag is only valid for
device_read.

typedef long Device_Flags;

Section B: Network Instrument Protocol Page 23

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.5.4. Timeouts

The io_timeout value determines how long a network instrument server allows an I/O operation to take.
The lock_timeout determines how long a network instrument server will wait for a lock to be released.
Units for both are in milliseconds.

 unsigned long io_timeout; /* time to wait for I/O */
 unsigned long lock_timeout; /* time to wait for a lock */

B.5.5. Generic Parameter

The generic parameter is used by several of the RPCs to pass the link ID, the operation flags, and the
timeout value to the device.

struct Device_GenericParms {
 Device_Link lid; /* Device_Link ID from create_link */
 Device_Flags flags; /* flags with options */
 unsigned long lock_timeout; /* time to wait for lock */
 unsigned long io_timeout; /* time to wait for I/O */
};

B.5.6. XDR ints and longs

The XDR encoding and decoding allows for integers to be passed between hosts, even when those hosts
have different integer representations. All integers defined by this specification are passed over the
network as 32-bit integers, either signed or unsigned as defined.

B.5.7. Opaque Arrays

In the case of device_write and device_read the XDR opaque type is used by the network instrument
protocol not because the data being represented is truly opaque, but to avoid the overhead associated with
character data (8 bits being promoted to 32 bits). Since the data parameters for device_write and
device_read are arrays, a structure is passed which contains a pointer to the data, data.data_val, and the
number of elements, data.data_len.

B.6. Network Instrument Messages (RPCs)

The following sections describe the actions each remote procedure performs. For each procedure:

1. The required functionality of the procedure is described. Successful completion of the procedure,
indicated by setting error to zero (0), means the required functions were performed.

2. Error conditions are described. Which error number to return under various conditions is given.
3. The procedure definition is given using RPCL (Remote Procedure Call Language).

OBSERVATION B.6.1:
 The RPCL definitions in this section should match the ones in section C, but the definitions in section
C take precedence.

Page 24 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

RULE B.6.1:
The program and version numbers shown in Table B.3 SHALL be used by network instrument servers and
network instrument clients for the network instrument protocol.

Program Number Version Protocol

Core Channel 395183 1 TCP
Abort Channel 395184 1 TCP
Interrupt Channel 395185 1 TCP

Table B.3 Program Numbers

Section C contains the complete RPCL description of the network instrument protocol.

RULE B.6.2:
Only the defined procedure numbers SHALL be used with the program numbers listed in Table B.3.

All other procedure numbers are reserved for future use.

Section B: Network Instrument Protocol Page 25

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.1. create_link

The create_link RPC creates a new link. This link is identified on subsequent RPCs by the lid returned
from the network instrument server.

struct Create_LinkParms {
 long clientId; /* implementation specific value.*/
 bool lockDevice; /* attempt to lock the device */
 unsigned long lock_timeout; /* time to wait on a lock */
 string device<>; /* name of device */
 };
struct Create_LinkResp {
 Device_ErrorCode error;
 Device_Link lid;
 unsigned short abortPort; /* for the abort RPC */
 unsigned long maxRecvSize; /* specifies max data size in bytes
 device will accept on a write */
};
Create_LinkResp create_link(Create_LinkParms) = 10;

RULE B.6.3:
To successfully complete a create_link RPC, a network instrument server SHALL:

1. If lockDevice is set to true, acquire the lock for the device.
2. Return in lid a link identifier to be used with future calls. The value of lid SHALL be unique for

all currently active links within a network instrument server.
3. Return in maxRecvSize the size of the largest data parameter the network instrument server can

accept in a device_write RPC. This value SHALL be at least 1024.
4. Return in asyncPort the port number for asynchronous RPCs. See device_abort.
5. Return with error set to 0, no error, to indicate successful completion.

The device parameter is a string which identifies the device for communications. See the document(s)
referred to in section A.6, Related Documents, for definitions of this string.

RECOMMENDATION B.6.1:
A network instrument server should be able to maintain at least two separate links simultaneously over a
single network instrument connection.

The network instrument client sends an identifying number in the clientId parameter. While this protocol
requires no special behavior based on the value of clientId, the device may provide a local means to
examine its value to help a user identify communication problems.

RULE B.6.4:
The network instrument server SHALL NOT alter its function based on the clientId.

RULE B.6.5:
If create_link is called when another link is not available, create_link SHALL terminate and set error to
9.

RULE B.6.6:
The operation of create_link SHALL ignore locks if lockDevice is false.

RULE B.6.7:
If lockDevice is true and the lock is not freed after at least lock_timeout milliseconds, create_link
SHALL terminate without creating a link and return with error set to 11, device locked by another link.

Page 26 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

RULE B.6.8:
The execution of create_link SHALL have no effect on the state of any device associated with the network
instrument server.

OBSERVATION B.6.2:
A create_link RPC cannot be aborted since a valid link identifier is not yet available. A network
instrument client should set lock_timeout to a reasonable value to avoid locking up the server.

Table B.4 lists create_link error values.

error Meaning

0 no error
1 syntax error
3 device not accessible
9 out of resources
11 device locked by another link
21 invalid address

Table B.4 create_link error Values

Section B: Network Instrument Protocol Page 27

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.2. destroy_link

The destroy_link call is used to close the identified link. The network instrument server recovers resources
associated with the link.

Device_Error destroy_link (Device_Link) = 23;

RULE B.6.9:
To successfully complete a destroy_link RPC, a network instrument server SHALL:

1. Deactivate the link identifier and recover any resources associated with the link.
2. If this link has the lock, free the lock (see device_lock and create_link).
3. Disable this link from using the interrupt mechanism (see device_enable_srq).
4. Return with error set to 0, no error, to indicate successful completion.

RULE B.6.10:
The Device_Link (link identifier) parameter is compared against the active link identifiers. If none match,
destroy_link SHALL terminate and set error to 4.

OBSERVATION B.6.3:
After a destroy_link, the network instrument server typically becomes ready to execute a new create_link,
assuming the resources have not already been utilized.

RULE B.6.11:
The execution of destroy_link SHALL have no effect on the state of any device associated with the
network instrument server.

RULE B.6.12:
The operation of destroy_link SHALL NOT be affected by device_abort.

Table B.5 lists destroy_link error values.

error Meaning

0 no error
4 invalid link identifier

Table B.5 destroy_link error Values

Page 28 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.3. device_write

The device_write RPC is used to write data to the specified device.

struct Device_WriteParms {
 Device_Link lid; /* link id from create_link */
 unsigned long io_timeout; /* time to wait for I/O */
 unsigned long lock_timeout /* time to wait for lock */
 Device_Flags flags;
 opaque data<>; /* the data length and the data itself */
};
struct Device_WriteResp {
 Device_ErrorCode error;
 unsigned long size; /* Number of bytes written */
};
Device_WriteResp device_write(Device_WriteParms) = 11;

OBSERVATION B.6.4:
Note that the opaque data<> is not truly opaque, but is used directly by the device. The opaque type is
used to avoid the overhead associated with character data (8 bits being promoted to 32 bits for XDR). data
can contain up to 232-1 bytes.

The network instrument server has indirect control over the maximum size of data through the value of
maxRecvSize returned in create_link.

RULE B.6.13:
To a successfully complete a device_write RPC, the network instrument server SHALL:

1. Transfer the contents of data to the device.
2. Return in size parameter the number of bytes accepted by the device.
3. Return with error set to 0, no error.

RULE B.6.14:
If the end flag in flags is set, then an END indicator SHALL be associated with the last byte in data.

OBSERVATION B.6.5:
If a controller needs to send greater than maxRecvSize bytes to the device at one time, then the network
instrument client makes multiple calls to device_write to accomplish the complete transaction. A network
instrument server accepts at least 1,024 bytes in a single device_write call due to RULE B.6.3.

OBSERVATION B.6.6:
The value of data.data_len may be zero, in which case no device actions are performed.

RULE B.6.15:
The lid parameter is compared to the active link identifiers. If none match, device_write SHALL
terminate and set error to 4, invalid link identifier.

RULE B.6.16:
If data.data_len is greater than the value of maxRecvSize returned in create_link, device_write SHALL
terminate without transferring any bytes to the device and SHALL set error to 5.

Section B: Network Instrument Protocol Page 29

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

RULE B.6.17:
If some other link has the lock, device_write SHALL examine the waitlock flag in flags. If the flag is set,
device_write SHALL block until the lock is free. If the flag is not set, device_write SHALL terminate and
set error to 11, device already locked by another link.

RULE B.6.18:
If after at least lock_timeout milliseconds the lock is not freed , device_write SHALL terminate with error
set to 11, device already locked by another link.

RULE B.6.19:
If after at least io_timeout milliseconds not all of data has been transferred to the device, device_write
SHALL terminate with error set to 15, I/O timeout. This timeout is based on the entire transaction and
not the time required to transfer single bytes.

OBSERVATION B.6.7:
The io_timeout value set by the application may need to change based on the size of data.

RULE B.6.20:
If the asynchronous device_abort RPC is called during execution, device_write SHALL terminate with
error set to 23, abort.

RULE B.6.21:
The number of bytes transferred to the device SHALL be returned in size, even when the call terminates
due to a timeout or device_abort.

RULE B.6.22:
If the network instrument server encounters a device specific I/O error while attempting to write the data,
device_write SHALL terminate with error set to 17, I/O error.

Table B.6 lists device_write error values.

error Meaning

0 no error
4 invalid link identifier
5 parameter error
11 device locked by another link
15 I/O timeout
17 I/O error
23 abort

Table B.6 device_write error Values

Page 30 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.4. device_read

The device_read RPC is used to read data from the device to the controller.

struct Device_ReadParms {
 Device_Link lid; /* link id from create_link */
 unsigned long requestSize; /* Bytes requested */
 unsigned long io_timeout; /* time to wait for I/O */
 unsigned long lock_timeout;/* time to wait for lock */
 Device_Flags flags;
 char termChar; /* valid if flags & termchrset */
};
struct Device_ReadResp {
 Device_ErrorCode error;
 long reason; /* Reason(s) read completed */
 opaque data<>; /* data_len and data_val */
};
Device_ReadResp device_read(Device_ReadParms) = 12;

Bit assignments for reason are shown in Table B.7.

Bit # 31 - 3 2 1 0
Contents 0 END CHR REQCNT

Table B.7 reason Bit Assignments

OBSERVATION B.6.8:
Note that the opaque data<> is not truly opaque, but is used directly by the controller. The opaque type is
used to avoid the overhead associated with character data (8 bits being promoted to 32 bits for XDR). data
can contain up to 232-1 bytes.

RULE B.6.23:
To successfully complete a device_read RPC, a network instrument server SHALL:

 1. Transfer bytes into the data parameter until one of the following termination conditions are met:
a. An END indicator is read. The END bit in reason SHALL be set.
b. requestSize bytes are transferred. The REQCNT bit in reason SHALL be set. This

termination condition SHALL be used if requestSize is zero.
c. termchrset is set in flags and a character which matches termChar is transferred. The

CHR bit in reason SHALL be set.
d. The buffer used to return the response is full. No bits in reason SHALL BE set.

 2. Return with error set to 0, no error, to indicate successful completion.

If more than one termination condition is valid, reason contains the bitwise inclusive OR of all the
reasons.

OBSERVATION B.6.9:
If reason is not set (value of 0) and error is zero, then the network instrument client could issue
device_read calls until one of the other three termination conditions is encountered.

RULE B.6.24:
The lid parameter is compared against the active link identifiers. If none match, device_read SHALL
terminate with error set to 4, invalid link identifier.

Section B: Network Instrument Protocol Page 31

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

RULE B.6.25:
If some other link has the lock, device_read SHALL examine the waitlock flag in flags. If the flag is set,
device_read SHALL block until the lock is free before transferring data. If the flag is not set, device_read
SHALL terminate with error set to 11, device locked by another link.

RULE B.6.26:
If after at least lock_timeout milliseconds the lock is not freed, device_read SHALL terminate with error
set to 11, device locked by another device and data.data_len set to zero.

RULE B.6.27:
If the transfer takes longer than io_timeout milliseconds, device_read SHALL terminate with error set to
15, I/O timeout, data.data_len set to however many bytes were transferred, and reason set to zero.

RULE B.6.28:
If the network instrument server encounters a device specific I/O error while attempting to read the data,
device_read SHALL terminate with error set to 17, I/O error.

RULE B.6.29:
If the asynchronous device_abort RPC is called during execution, device_read SHALL terminate with
error set to 23, abort.

RULE B.6.30:
The number of bytes transferred from the device into data SHALL be returned in data.data_len even
when device_read terminates due to a timeout or device_abort.

Table B.8 lists device_read error values.

error Meaning

0 no error
4 invalid link identifier
11 device locked by another link
15 I/O timeout
17 I/O error
23 abort

Table B.8 device_read error Values

Page 32 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.5. device_readstb

The device_readstb RPC is used to read a device's status byte.

struct Device_ReadStbResp {
 Device_ErrorCode error; /* error code */
 unsigned char stb; /* the returned status byte */
};

Device_ReadStbResp device_readstb (Device_GenericParms) = 13;

RULE B.6.31:
To successfully complete a device_readstb RPC, the network instrument server SHALL:

1. Return in the stb parameter the device's status byte.
2. Return with error set to 0, no error, to indicate successful completion

OBSERVATION B.6.10:
Since not all devices directly support a status byte, how this operation is executed and the semantics of the
stb parameter depend upon the interface between the network instrument server and the device.

RULE B.6.32:
If a status byte cannot be returned, device_readstb SHALL terminate and set error to 8, operation not
supported.

RULE B.6.33:
The lid parameter is compared against the active link identifiers . If none match, device_readstb SHALL
terminate with error set to 4, invalid link identifier.

RULE B.6.34:
If some other link has the lock, the procedure examines the waitlock flag in flags. If the flag is set,
device_readstb blocks until the lock is free before retrieving the status byte. If the flag is not set,
device_readstb SHALL terminate and set error to 11, device locked by another link.

RULE B.6.35:
If after at least lock_timeout milliseconds the lock is not freed, device_readstb SHALL terminate with
error set to 11, device locked by another link.

RULE B.6.36:
If after at least io_timeout milliseconds the operation is not complete, device_readstb SHALL terminate
with error set to 15, I/O timeout.

RULE B.6.37:
If the network instrument server encounters a device specific I/O error while attempting to read the data,
device_readstb SHALL terminate with error set to 17.

RULE B.6.38:
If the asynchronous device_abort RPC is called during execution, device_readstb SHALL terminate with
error set to 23.

Section B: Network Instrument Protocol Page 33

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

Table B.9 lists device_readstb error values.

error Meaning

0 no error
4 invalid link identifier
8 operation not supported
11 device locked by another link
15 I/O timeout
17 I/O error
23 abort

Table B.9 device_readstb error Values

Page 34 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.6. device_trigger

The device_trigger RPC is used to send a trigger to a device.

Device_Error device_trigger (Device_GenericParms) = 14;

RULE B.6.39:
To successfully complete a device_trigger RPC, a network instrument server SHALL

1. Send a trigger to the associated device.
2. Return with error set 0, no error, to indicate successful completion.

OBSERVATION B.6.11:
Since not all devices directly support a trigger, how this operation is carried out depends upon the
interface between the network instrument server and the device.

RULE B.6.40:
If the device does not support a trigger and the network instrument server is able to detect this,
device_trigger SHALL terminate and set error to 8, operation not supported.

OBSERVATION B.6.12:
IEEE 488.1 and similar interfaces may not be able to detect that the device does not support a trigger.

RULE B.6.41:
The lid parameter is compared against the link identifiers. If none match, device_trigger SHALL
terminate and set error to 4, invalid link identifier.

RULE B.6.42:
If some other link has the lock, device_trigger SHALL examine the waitlock flag in flags. If the flag is
set, device_trigger SHALL block until the lock is free before sending the trigger. If the flag is not set,
device_trigger SHALL terminate and set error to 11, device locked by another link.

RULE B.6.43:
If after at least lock_timeout milliseconds the lock is not freed, device_trigger SHALL terminate with
error set to 11, device locked by another link.

RULE B.6.44:
If after at least io_timeout milliseconds the operation is not complete, device_trigger SHALL terminate
with error set to 15, I/O timeout.

RULE B.6.45:
If the network instrument server encounters a device specific I/O error while sending to trigger ,
device_trigger SHALL terminate with error set to 17, I/O error.

RULE B.6.46:
If the asynchronous device_abort RPC is called during execution, device_trigger SHALL terminate with
error set to 23, abort.

Section B: Network Instrument Protocol Page 35

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

Table B.10 lists device_trigger error values.

error Meaning

0 no error
4 invalid link identifier
8 operation not supported
11 device locked by another link
15 I/O timeout
17 I/O error
23 abort

Table B.10 device_trigger error Values

Page 36 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.7. device_clear

The device_clear RPC is used to send a device clear to a device.

Device_Error device_clear (Device_GenericParms) = 15;

RULE B.6.47:
To successfully complete a device_clear RPC, a network instrument server SHALL:

1. Clear the associated device
2. Return with error set to zero, no error, to indicate successful completion.

OBSERVATION B.6.13:
IEEE 488.1 and similar interfaces may not be able to detect that the device does not support a clear.

OBSERVATION B.6.14:
Since not all devices directly support a clear operation, how this operation is executed depends upon the
interface between the network instrument server and the device.

RULE B.6.48:
If the device does not support a clear operation and the network instrument server is able to detect this,
device_clear SHALL terminate and set error to 8, operation not supported.

RULE B.6.49:
The lid parameter is compared against the active link identifiers. If none match, device_clear SHALL
terminate with error set to 4, invalid link identifier.

RULE B.6.50:
If some other link has the lock, device_clear SHALL examine the waitlock flag in flags. If the flag is set,
device_clear SHALL block until the lock is free. If the flag is not set, device_clear SHALL terminate
with error set to 11, device locked by another link.

RULE B.6.51:
If after at least lock_timeout milliseconds the lock is not freed, device_clear SHALL terminate with error
set to 11, device locked by another device.

RULE B.6.52:
If after at least io_timeout milliseconds the operation is not complete, device_clear SHALL terminate
with error set to 15, I/O timeout.

RULE B.6.53:
If the network instrument server encounters a device specific I/O error while attempting to clear the
device, device_clear SHALL terminate with error set to 17, I/O error.

RULE B.6.54:
If the asynchronous device_abort RPC is called during execution, device_clear SHALL terminate with
error set to 23, abort.

Section B: Network Instrument Protocol Page 37

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

Table B.11 lists device_clear error values.

error Meaning

0 no error
4 invalid link identifier
8 operation not supported
11 device locked by another link
15 I/O timeout
17 I/O error
23 abort

Table B.11 device_clear error Values

Page 38 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.8. device_remote

The device_remote RPC is used to place a device in a remote state wherein all programmable local
controls are disabled.

Device_Error device_remote (Device_GenericParms) = 16;

RULE B.6.55:
To successfully complete a device_remote RPC, a network instrument server SHALL:

1. Place the associated device in a remote state.
2. Return with error set to zero, no error, to indicate successful completion.

OBSERVATION B.6.15:
Since not all devices directly support a remote state, how this operation is executed depends upon the
interface between the network instrument server and the device.

RULE B.6.56:
If the device does not support a remote state and the network instrument server is able to detect this,
device_remote SHALL terminate and set error to 8, operation not supported.

RULE B.6.57:
The lid parameter is compared against the active link identifiers. If none match, device_remote SHALL
terminate with error set to 4, invalid link identifier.

RULE B.6.58:
If some other link has the lock, device_remote SHALL examine the waitlock flag in flags. If the flag is
set, device_remote SHALL block until the lock is free. If the flag is not set, device_remote SHALL
terminate with error set to 11, device locked by another link.

RULE B.6.59:
If after at least lock_timeout milliseconds the lock is not freed, device_remote SHALL terminate with
error set to 11, device locked by another link.

RULE B.6.60:
If after at least io_timeout milliseconds the operation is not complete, device_remote SHALL terminate
with error set to 15, I/O timeout.

RULE B.6.61:
If the network instrument server encounters a device specific I/O error while attempting to place the
device in the remote state, device_remote SHALL terminate with error set to 17, I/O error.

RULE B.6.62:
If the asynchronous device_abort RPC is called during execution, device_remote SHALL terminate with
error set to 23, abort.

Section B: Network Instrument Protocol Page 39

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

Table B.12 lists device_remote error values.

error Meaning

0 no error
4 invalid link identifier
8 operation not supported
11 device locked by another link
15 I/O timeout
17 I/O error
23 abort

Table B.12 device_remote error Values

Page 40 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.9. device_local

The device_local RPC is used to place a device in a local state wherein all programmable local controls
are enabled.

Device_Error device_local (Device_GenericParms) = 17;

RULE B.6.63:
To successfully complete a device_local RPC, a network instrument server SHALL:

1. Place the associated device in a local state.
2. Return with error set to zero, no error, to indicate successful completion.

OBSERVATION B.6.16:
Since not all devices directly support a local state, how this operation is executed depends upon the
interface between the network instrument server and the device.

RULE B.6.64:
If the device does not support a local state and the network instrument server is able to detect this,
device_local SHALL terminate and set error to 8, operation not supported.

RULE B.6.65:
The lid parameter is compared against the active link identifiers . If none match, device_local SHALL
terminate with error set to 4, invalid link identifier.

RULE B.6.66:
If some other link has the lock, device_local SHALL examine the waitlock flag in flags. If the flag is set,
device_local SHALL block until the lock is free. If the flag is not set, device_local SHALL terminate
with error set to 11, device locked by another link.

RULE B.6.67:
If after at least lock_timeout milliseconds the lock is not freed, device_local SHALL terminate with error
set to 11, device locked by another link.

RULE B.6.68:
If after at least io_timeout milliseconds the operation is not complete, device_local SHALL terminate
with error set to 15, I/O timeout.

RULE B.6.69:
If the network instrument server encounters a device specific I/O error while attempting to place the
device in the local state, device_local SHALL terminate with error set to 17, I/O error.

RULE B.6.70:
If the asynchronous device_abort RPC is called during execution, device_local SHALL terminate with
error set to 23, abort.

Section B: Network Instrument Protocol Page 41

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

Table B.13 lists device_local error values.

error Meaning

0 no error
4 invalid link identifier
8 operation not supported
11 device locked by another link
15 I/O timeout
17 I/O error
23 abort

Table B.13 device_local error Values

Page 42 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.10. device_lock

The device_lock RPC is used to acquire a device's lock.

struct Device_LockParms {
 Device_Link lid; /* link id from create_link */
 Device_Flags flags; /* Contains the waitlock flag */
 unsigned long lock_timeout; /* Time to wait to acquire lock */
};

Device_Error device_lock(Device_LockParms) = 18;

RULE B.6.71:
To successfully complete a device_lock RPC, a network instrument server SHALL:

1. Acquire the device's lock.
2. Return with error set to zero, no error, to indicate successful completion.

RULE B.6.72:
If this link already has the lock, the network instrument server SHALL terminate with error set to 11,
device locked by another link.

OBSERVATION B.6.17:
Multiple network instrument servers on the same host need to communicate with one another to
implement locking since locks are global to all network instrument servers in a given host.

RULE B.6.73:
The lid parameter is compared against the active link identifiers . If none match, device_lock SHALL
terminate, before trying to acquire the device's lock, with error set to 4, invalid link identifier.

RULE B.6.74:
If some other link has the lock, device_lock SHALL examine the waitlock flag in flags. If the flag is set,
device_lock SHALL block until the lock is free. If the flag is not set, device_lock SHALL terminate with
error set to 11, device locked by another link.

OBSERVATION B.6.18:
The network instrument server blocks if another link has the lock, but does not block if another link is
performing an I/O operation so long as the lock is available.

RULE B.6.75:
If after at least lock_timeout milliseconds the lock is not freed, device_lock SHALL terminate with error
set to 11, device locked by another link.

RULE B.6.76:
If the asynchronous device_abort RPC is called during execution, device_lock SHALL terminate with
error set to 23, abort.

RULE B.6.77:
The locks SHALL be tied to the core connection between the network instrument client and the network
instrument server. This means that if the network instrument server detects a broken connection, it
SHALL release all of the connection's locks.

Section B: Network Instrument Protocol Page 43

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

Table B.14 lists device_lock error values.

error Meaning

0 no error
4 invalid link identifier
11 device locked by another link
23 abort

Table B.14 device_lock error Values

Page 44 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.11. device_unlock

The device_unlock RPC is used to release locks acquired by the device_lock RPC.

Device_Error device_unlock (Device_Link) = 19;

RULE B.6.78:
To successfully complete a device_unlock, a network instrument server SHALL:

1. Release the lock.
2. Return with error set to zero, no error, to indicate successful completion.

RULE B.6.79:
The Device_Link (link identifier) parameter is compared against the active link identifiers . If none
match, device_unlock SHALL terminate with error set to 4, invalid link identifier.

RULE B.6.80:
If this link does not have the lock, device_unlock SHALL terminate with error set to 12, no lock held by
this link.

RULE B.6.81:
The operation of device_unlock SHALL NOT be affected by device_abort.

Table B.15 lists device_unlock error values.

error Meaning

0 no error
4 invalid link identifier
12 no lock held by this link

Table B.15 device_unlock error Values

Section B: Network Instrument Protocol Page 45

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.12. create_intr_chan

The create_intr_chan RPC is used to inform the network instrument server to establish an interrupt
channel. See section B.3, "Interrupt Logic", for more information.

enum Device_AddrFamily {DEVICE_TCP, DEVICE_UDP};/* used by interrupts*/
struct Device_RemoteFunc {
 unsigned long hostAddr; /* Host servicing Interrupt */
 unsigned short hostPort; /* valid port # on client */
 unsigned long progNum; /* DEVICE_INTR */
 unsigned long progVers; /* DEVICE_INTR_VERSION */
 Device_AddrFamily progFamily; /* DEVICE_UDP | DEVICE_TCP */
 } ;
Device_Error create_intr_chan (Device_RemoteFunc) = 25;

RULE B.6.82:
To successfully complete a create_intr_chan RPC, a network instrument server SHALL:

1. Establish an interrupt channel to an RPC mechanism at hostAddr and hostPort whose program
number is progNum and version is progVers using the underlying protocol specified in
progFamily.

2. Return with error set to zero, no error, to indicate successful completion.

RULE B.6.83:
If the interrupt channel cannot be established, create_intr_chan SHALL terminate and set error to 6,
channel not established.

RULE B.6.84:
A network instrument server SHALL support a TCP interrupt channel.

PERMISSION B.6.1:
A network instrument server MAY support a UDP interrupt channel.

OBSERVATION B.6.19:
Using UDP for the interrupt channel generally provides higher performance, but with the risks that some
device_intr_srq RPCs might not arrive at all or that they might arrive out of order.

RULE B.6.85:
If progFamily is a value other than DEVICE_TCP or DEVICE_UDP, create_intr_chan SHALL terminate
and set error to 8, operation not supported.

RULE B.6.86:
If the network instrument server does not support the protocol specified in progFamily, such as UDP,
create_intr_chan SHALL terminate and set error to 8, operation not supported.

RULE B.6.87:
If progNum is not 395185, create_intr_chan SHALL terminate and set error to 8, operation not
supported.

RULE B.6.88:
If progVers is not one (1), create_intr_chan SHALL terminate and set error to 8, operation not supported.

OBSERVATION B.6.20:
A network instrument client normally sets hostAddr equal to its own IP address.

Page 46 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

RULE B.6.89:
If a network instrument server already has established the interrupt channel and it receives
create_intr_chan, it SHALL perform no operation and return with error set to 29.

RULE B.6.90:
A network instrument server SHALL operate correctly even if an interrupt channel is not established.

Table B.16 lists create_intr_chan error values.

error Meaning

0 no error
6 channel not established
8 operation not supported
29 channel already established

Table B.16 create_intr_chan error Values

Section B: Network Instrument Protocol Page 47

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.13. destroy_intr_chan

The destroy_intr_chan RPC is used to inform the network instrument server to close its interrupt channel.
See section B.3, "Interrupt Logic", for more information.

Device_Error destroy_intr_chan (void) = 26;

RULE B.6.91:
To successfully complete a destroy_intr_chan RPC, a network instrument server SHALL:

1. Close its interrupt channel.
2. Return with error set to zero, no error, to indicate successful completion.

RULE B.6.92:
If there is no interrupt channel to be closed, destroy_intr_chan SHALL terminate with error set to 6,
channel not established.

Table B.17 lists destroy_intr_chan error values.

error Meaning

0 no error
6 channel not established

Table B.17 destroy_intr_chan error Values

Page 48 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.14. device_enable_srq

The device_enable_srq RPC is used to enable or disable the sending of device_intr_srq RPCs by the
network instrument server. See section B.3, "Interrupt Logic", for more information.

struct Device_EnableSrqParms {
 Device_Link lid;
 bool enable; /* Enable or disable interrupts */
 opaque handle<40>; /* Host specific data */
};
Device_Error device_enable_srq (Device_EnableSrqParms) = 20;

RULE B.6.93:
To successfully complete a device_enable_srq RPC, a network instrument server SHALL:

1. Enable or disable whether this link calls device_intr_srq when service is requested. The
interrupt for this link is disabled if enable is zero. It is enabled if enable is non-zero.

2. Store handle<40> so it can be passed back to the network instrument client in a device_intr_srq
RPC when a service request occurs. The network instrument SHALL NOT modify this
information.

3. Return with error set to zero, no error, to indicate successful completion.

OBSERVATION B.6.21:
A network instrument server maintains a service request enable state for each of its links. These states are
unaffected by interrupt channel creation or destruction.

RECOMMENDATION B.6.1:
The network instrument client should send in the handle parameter a unique link identifier. This will
allow the network instrument client to identify the link associated with subsequent device_intr_srq RPCs.

RULE B.6.94:
The lid parameter is compared against the active link identifiers . If none match, device_enable_srq
SHALL terminate with error set to 4, invalid link identifier.

RULE B.6.95:
The device_enable_srq RPC SHALL operate the same whether or not the link has the lock.

Table B.18 lists device_enable_srq error values.

error Meaning

0 no error
4 invalid link identifier

Table B.18 device_enable_srq error Values

Section B: Network Instrument Protocol Page 49

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.15. device_docmd

The device_docmd RPC allows a variety of operations to be executed.

struct Device_DocmdParms {
 Device_Link lid; /* link id from create_link */
 Device_Flags flags; /* flags specifying various options */
 unsigned long io_timeout; /* time to wait for I/O to complete */
 unsigned long lock_timeout; /* time to wait on a lock */
 long cmd; /* which command to execute */
 bool network_order;/* client's byte order */
 long datasize; /* size of individual data elements */
 opaque data_in<>; /* docmd data parameters */
};
struct Device_DocmdResp {
 Device_ErrorCode error; /* returned status */
 opaque data_out<>; /* returned data parameter */
};
Device_DocmdResp device_docmd(Device_DocmdParms)= 22;

OBSERVATION B.6.22:
Note that the opaque data parameters are not truly opaque, but are used directly by the network instrument
client and network instrument server. The opaque type is used to avoid the overhead associated with
character data (8 bits being promoted to 32 bits for XDR). The data parameters can contain up to 232-1
bytes.

RULE B.6.96:
In response to a successful completion of device_docmd, the network instrument server SHALL:

1. Execute the operation associated with cmd, performing byte-swapping as necessary
2. Return in data_out the results defined by cmd.
3. Return with error set to 0, no error, to indicate successful completion

All cmd values are reserved for definition by related documents listed in A.6.

PERMISSION B.6.2:
In a network instrument server, none, some, or all values of cmd for device_docmd MAY be supported.
The operation performed and the meaning and structure of data_in and data_out depend on the value of
cmd.

RULE B.6.97:
The lid parameter is compared against the active link identifiers . If none match, device_docmd SHALL
terminate with error set to 4, invalid link identifier.

RULE B.6.98:
The value of cmd is compared against the values supported by the network instrument server. If the
particular value is not supported, device_docmd SHALL return with error set to 8, operation not
supported.

Network_order is true (set) if the architecture of the network instrument client specifies byte-ordering in
network order (big-endian). Network order is defined by the Internet Protocol Suite.

Page 50 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

RULE B.6.99:
The network instrument server SHALL swap bytes in data_in and data_out as necessary if the network
instrument server's architecture does not match that of the network instrument client, as indicated by the
network_order parameter.

RULE B.6.100:
Byte-swapping SHALL be performed based on datasize, which indicates the size of individual data
elements, and data_in.data_in_len or data_out.data_out_len, which indicates the total length of the data
in bytes based on the following formula:

A value of one(1) in datasize means byte data and no swapping is performed. A value of two(2)
in datasize means 16-bit word data and bytes are swapped on word boundaries. A value of four(4)
in datasize means 32-bit longword data and bytes are swapped on longword boundaries. A value
of eight(8) in datasize means 64-bit data and bytes are swapped on 8-byte boundaries.

For example, assuming 'a', 'b', 'c', ... represent bytes, byte swapping takes place as in Table B.19, "Byte
Swapping".

datasize Data to be Swapped Resulting Data

1 abcdefgh abcdefgh
2 abcdefgh badcfehg
4 abcdefgh dcbahgfe
8 abcdefgh hgfedcba

Table B.19 Byte Swapping

RULE B.6.101:
If some other link has the lock, device_docmd SHALL examine the waitlock flag in flags. If the flag is
set, device_docmd SHALL block until the lock is free. If the flag is not set, device_docmd SHALL
terminate with error set to 11, device locked by another link.

RULE B.6.102:
If after at least lock_timeout milliseconds, the lock is not freed, device_docmd SHALL terminate with
error set to 11, device locked by another link.

RULE B.6.103:
If after at least io_timeout milliseconds, the cmd cannot be completely executed, device_docmd SHALL
terminate with error set to 15, I/O timeout.

RULE B.6.104:
If the network instrument server encounters a device specific I/O error while attempting the operation,
device_docmd SHALL terminate with error set to 17, I/O error.

RULE B.6.105:
If the asynchronous device_abort RPC is called during execution, device_docmd SHALL terminate with
error set to 23, abort.

Section B: Network Instrument Protocol Page 51

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

Table B.20 lists device_docmd error values.

error Meaning

0 no error
4 invalid link identifier
8 operation not supported
11 device locked by another link
15 I/O timeout
17 I/O error
23 abort

Table B.20 device_docmd error Values

Page 52 Section B: Network Instrument Protocol

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.16. device_abort

The device_abort RPC stops an in-progress call. This RPC is the only RPC defined by this specification
which uses the abort channel between the network instrument client and the network instrument server.

Device_Error device_abort (Device_Link) = 1;

RULE B.6.106:
To successfully complete a device_abort RPC, a network instrument server SHALL:

1. Initiate termination of any core channel, in-progress RPC associated with the link except
destroy_link, device_enable_srq, and device_unlock.

2. Return with error set to 0, no error, to indicate successful completion

OBSERVATION B.6.23:
The intent of this rule is to handle the device_abort RPC ahead of the other operations, but due to
operating system specific implementation details the timeliness cannot be guaranteed.

OBSERVATION B.6.24:
The device_abort RPC only aborts an in-progress RPC, not a queued RPC.

RULE B.6.107:
After replying to the device_abort call, the network instrument server SHALL reply to the original in-
progress call which was aborted with error set to 23, aborted.

OBSERVATION B.6.25:
Receiving 0 on the abort call at the network instrument client only means that the abort was successfully
delivered to the network instrument server.

RULE B.6.108:
The lid parameter is compared against the active link identifiers . If none match, device_abort SHALL
terminate with error set to 4 invalid link identifier.

RULE B.6.109:
The operation of device_abort SHALL NOT be affected by locking.

Table B.21 lists device_abort error values.

error Meaning

0 no error
4 invalid link identifier

Table B.21 device_abort error Values

Section B: Network Instrument Protocol Page 53

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

B.6.17. device_intr_srq

A device_intr_srq RPC is used by a network instrument server to send a service request to a network
instrument client.

struct Device_SrqParms {
 opaque handle<>;
};
void device_intr_srq (Device_SrqParms) = 30;

A device_intr_srq RPC is sent on the interrupt channel between a network instrument server and a
network instrument client. It is used to indicate that a device is requesting service.

RULE B.6.110:
A network instrument server SHALL send device_intr_srq only if service requests have been enabled by
device_enable_srq and an interrupt channel exists.

RULE B.6.111:
A network instrument server SHALL send in the handle parameter the data exactly as it was received in
the device_enable_srq handle parameter for the associated link.

OBSERVATION B.6.26:
Upon receipt of device_intr_srq, a network instrument client normally takes action to service the request,
but no action is required of the network instrument client by this specification.

Page 54 Section C: Network Instrument
RPCL

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

C. Network Instrument RPCL
An ONC RPC protocol is described using RPCL. This section contains the complete listing of the
protocols for the core, abort , and interrupt channels.

RULE C.1:
A network instrument host SHALL implement the following RPCL constructs.

C.1. Core and Abort Channel Protocol

/* Types */
typedef long Device_Link;
enum Device_AddrFamily { /* used by interrupts */
 DEVICE_TCP,
 DEVICE_UDP
};
typedef long Device_Flags;

/* Error types */
typedef long Device_ErrorCode;
struct Device_Error {
 Device_ErrorCode error;
};

struct Create_LinkParms {
 long clientId; /* implementation specific value */
 bool lockDevice; /* attempt to lock the device */
 unsigned long lock_timeout; /* time to wait on a lock */
 string device<>; /* name of device */
};
struct Create_LinkResp {
 Device_ErrorCode error;
 Device_Link lid;
 unsigned short abortPort; /* for the abort RPC */
 unsigned long maxRecvSize; /* specifies max data size in bytes
 device will accept on a write */
};
struct Device_WriteParms {
 Device_Link lid; /* link id from create_link */
 unsigned long io_timeout; /* time to wait for I/O */
 unsigned long lock_timeout; /* time to wait for lock */
 Device_Flags flags;
 opaque data<>; /* the data length and the data itself */
};
struct Device_WriteResp {
 Device_ErrorCode error;
 unsigned long size; /* Number of bytes written */
};
struct Device_ReadParms {
 Device_Link lid; /* link id from create_link */
 unsigned long requestSize; /* Bytes requested */
 unsigned long io_timeout; /* time to wait for I/O */
 unsigned long lock_timeout; /* time to wait for lock */
 Device_Flags flags;
 char termChar; /* valid if flags & termchrset */

Section C: Network Instrument RPCL
Page 55

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

};
struct Device_ReadResp {
 Device_ErrorCode error;
 long reason; /* Reason(s) read completed */
 opaque data<>; /* data.len and data.val */
};
struct Device_ReadStbResp {
 Device_ErrorCode error; /* error code */
 unsigned char stb; /* the returned status byte */
};
struct Device_GenericParms {
 Device_Link lid; /* Device_Link id from connect call */
 Device_Flags flags; /* flags with options */
 unsigned long lock_timeout; /* time to wait for lock */
 unsigned long io_timeout; /* time to wait for I/O */
};
struct Device_RemoteFunc {
 unsigned long hostAddr; /* Host servicing Interrupt */
 unsigned short hostPort; /* valid port # on client */
 unsigned long progNum; /* DEVICE_INTR */
 unsigned long progVers; /* DEVICE_INTR_VERSION */
 Device_AddrFamily progFamily; /* DEVICE_UDP | DEVICE_TCP */
};
struct Device_EnableSrqParms {
 Device_Link lid;
 bool enable; /* Enable or disable interrupts */
 opaque handle<40>; /* Host specific data */
};
struct Device_LockParms {
 Device_Link lid; /* link id from create_link */
 Device_Flags flags; /* Contains the waitlock flag */
 unsigned long lock_timeout; /* time to wait to acquire lock */
};
struct Device_DocmdParms {
 Device_Link lid; /* link id from create_link */
 Device_Flags flags; /* flags specifying various options */
 unsigned long io_timeout; /* time to wait for I/O to complete */
 unsigned long lock_timeout; /* time to wait on a lock */
 long cmd; /* which command to execute */
 bool network_order; /* client's byte order */
 long datasize; /* size of individual data elements */
 opaque data_in<>; /* docmd data parameters */
};
struct Device_DocmdResp {
 Device_ErrorCode error; /* returned status */
 opaque data_out<>; /* returned data parameter */
};

program DEVICE_ASYNC{
 version DEVICE_ASYNC_VERSION {
 Device_Error device_abort (Device_Link) = 1;
 } = 1;
} = 0x0607B0;

program DEVICE_CORE {
 version DEVICE_CORE_VERSION {
 Create_LinkResp create_link (Create_LinkParms) = 10;
 Device_WriteResp device_write (Device_WriteParms) = 11;
 Device_ReadResp device_read (Device_ReadParms) = 12;
 Device_ReadStbResp device_readstb (Device_GenericParms) = 13;

Page 56 Section C: Network Instrument
RPCL

October 4, 2000 Printing VXIbus Specification: VXI-11 Revision 1.0

 Device_Error device_trigger (Device_GenericParms) = 14;
 Device_Error device_clear (Device_GenericParms) = 15;
 Device_Error device_remote (Device_GenericParms) = 16;
 Device_Error device_local (Device_GenericParms) = 17;
 Device_Error device_lock (Device_LockParms) = 18;
 Device_Error device_unlock (Device_Link) = 19;
 Device_Error device_enable_srq (Device_EnableSrqParms) = 20;
 Device_DocmdResp device_docmd (Device_DocmdParms) = 22;
 Device_Error destroy_link (Device_Link) = 23;
 Device_Error create_intr_chan (Device_RemoteFunc) = 25;
 Device_Error destroy_intr_chan (void) = 26;
 } = 1;
} = 0x0607AF;

C.2. Interrupt Protocol

/* Types */
struct Device_SrqParms {

 opaque handle<>;
};

program DEVICE_INTR {
 version DEVICE_INTR_VERSION {
 void device_intr_srq (Device_SrqParms) = 30;
 }=1;
}= 0x0607B1;

